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Abstract
Fitting composition data within stock assessment models has historically utilized the multinomial likelihood, often with

iterative reweighting algorithms to account for overdispersion due to sampling and process error. Recently, the Dirichlet-
multinomial has been increasingly incorporated into assessments as a composition likelihood that can be internally weighted
using an estimated overdispersion parameter. There exist two popular formulations of the Dirichlet-multinomial. Recent re-
search has also suggested improved performance in assessments using the logistic-normal for composition data, specifically
when the composition sample size is large. We evaluated the performance of two Dirichlet-multinomial formulations and
the logistic-normal by incorporating them into assessments that differed greatly in sample sizes for composition data: cobia
(Rachycentron canadum) and Pacific hake (Merluccius productus). We compared the likelihoods against one another using various
model diagnostic criteria common in stock assessments. Overall, the linear formulation of the Dirichlet-multinomial outper-
formed the saturating formulation. At small sample sizes of the cobia assessment, the logistic-normal performed poorly. The
comparison was more robust at large sample sizes of the Pacific hake assessment; however on balance, it seems prudent to
proceed with the Dirichlet-multinomial.

Key words: stock assessment, age-structured models, composition data, overdispersion, data-weighting, integrated models,
model comparison, model diagnostics

Résumé
Le calage de données de composition dans des modèles d’évaluation de stocks a traditionnellement employé la probabil-

ité multinomiale, souvent avec des algorithmes de repondération itérative pour tenir compte de la surdispersion due aux
erreurs d’échantillonnage et de traitement. Ces dernières années, la loi multinomiale de Dirichlet est de plus en plus sou-
vent intégrée aux évaluations en tant que probabilité de composition qui peut être pondérée au sein du modèle à l’aide d’un
paramètre de surdispersion. Il existe deux formulations répandues de la loi multinomiale de Dirichlet. Des travaux récents
indiqueraient aussi une performance améliorée dans les évaluations qui emploient la loi logistique-normale pour les données
de composition, plus précisément quand la taille de l’échantillon de composition est grande. Nous évaluons la performance
de deux formulations de la loi multinomiale de Dirichlet et de la loi logistique-normale en les incorporant à des évaluations
qui diffèrent considérablement sur le plan de la taille des échantillons pour les données de composition, soit celles du cobia
(Rachycentron canadum) et du merlu du Chili (Merluccius productus). Nous comparons les différentes probabilités en utilisant dif-
férents critères de diagnostic de modèles répandus dans les évaluations de stocks. Globalement, la formulation linéaire de la
loi multinomiale de Dirichlet donne de meilleurs résultats que la formulation incrémentielle. Pour des échantillons de petite
taille de l’évaluation du cobia, la loi logistique-normale ne donne pas de bons résultats. La comparaison est plus robuste pour
des échantillons de grande taille de l’évaluation du merlu du Chili. Il semble toutefois prudent, en général, d’utiliser la loi
multinomiale de Dirichlet. [Traduit par la Rédaction]

Mots-clés : évaluation de stocks, modèles structurés par âge, données de composition, surdispersion, pondération des données,
modèles intégrés, comparaison de modèles, diagnostic de modèles
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1. Introduction
Modern fisheries management is largely facilitated by in-

tegrated stock assessments (Dichmont et al. 2016), which
fit multiple data sources within a statistical model frame-
work to estimate stock status and the influence of fishing on
population dynamics. An invaluable data source often avail-
able in integrated assessments is composition data, or ob-
servations of the relative frequency of individuals in age or
length groups, generally collected via sampling of the fishery
harvest and by scientifically designed surveys. Composition
data are critical to integrated assessments such as statisti-
cal catch-at-age (SCA) and catch-at-size (SCS) models as they
make use of observations on relative differences in ages or
size classes over time. Given that SCA and SCS models funda-
mentally track numbers of organisms through age and size
classes, respectively, these relative differences are the key in-
formation source that allows for distinguishing recruitment
strength, mortality-at-age, vulnerability to capture (Lee et al.
2011; Maunder and Piner 2015), and, for size-composition
data, growth of organisms (Punt et al. 2016).

Composition data, as generally collected by fisheries sam-
pling programs, suffer from two related issues: correlations
and overdispersion (Pennington and Volstad 1994; Francis
2014; Thorson et al. 2017). Each stems from the general
premise that there is rarely, if ever, a final pool of harvested
fish at the end of the fishing season from which to take a
random sample. Instead, samples must be taken through-
out the season, from different ports and vessels, resulting in
spatial and temporal autocorrelation between samples. Thus,
composition likelihoods that assume independent and iden-
tically distributed (iid) draws from a population of interest,
such as with the multinomial distribution, will be misspec-
ified. The collection of multiple samples from a port or ves-
sel results in clustered, and thus correlated, data. As an ex-
ample, Pennington and Volstad (1994) put forth the premise
of intrahaul correlation, suggesting that samples taken from
the catch of one haul are more similar to each other in size
and age than samples taken from different hauls. This relat-
edness can function at different levels such as the port of
landing or the temporal grouping, and is likely present to
some degree in every fishery. The relatedness between sam-
ples generally causes positive correlations between bins that
are close together and negative correlations between bins
that are far apart (Francis 2011, 2017). Not only are these cor-
relations not accounted for in many composition likelihoods
commonly utilized in stock assessment (Francis 2014; Fisch
et al. 2021), there also exists a difference in the true amount
of information conveyed in the sample compared with what
is perceived. The variance of the data, because of clustered
sampling, is greater than what would be expected had the
same number of fish been sampled under iid assumptions.
This is termed overdispersion and causes difficulty in appro-
priately weighting composition data within an integrated as-
sessment, as the total number of fish measured or aged is not
necessarily representative of the expected sampling error in
the data. In addition, the process model of a stock assessment
is theoretically guaranteed to be misspecified (as all models
are approximations of reality). This not only causes additional

variation in the model residuals above that expected from
sampling error alone but depending on the nature of the mis-
specification, it can also induce correlation patterns in resid-
uals similar to those that arise as a function of nonindepen-
dent sampling (Francis 2011). In concert, while composition
data are invaluable for integrated SCA and SCS assessments,
they also introduce some challenges.

Several studies have explored these general issues in stock
assessments (Francis 2011, 2014; Maunder 2011; Albertsen et
al. 2017; Thorson et al. 2017; Fisch et al. 2021). They gen-
erally focused on down-weighting the composition data in
the total likelihood function using either iterative reweight-
ing algorithms (Francis 2011; Truesdell et al. 2017) or alter-
native likelihoods that can be weighted within the assess-
ment (Maunder 2011; Francis 2014; Albertsen et al. 2017;
Thorson et al. 2017; Fisch et al. 2021). Fisch et al. (2021) uti-
lized a spatially explicit operating model to generate overdis-
persed composition data, containing correlations similar to
those described in real data and then fit those data us-
ing a variety of composition likelihoods, including those it-
eratively weighted, in spatially aggregated SCA assessment
models. The examined likelihoods included the multino-
mial, the robust multinomial, the Dirichlet, the Dirichlet-
multinomial, and the logistic-normal. They found that the
likelihood which performed optimally depended on the sam-
ple size of the composition data and on the degree of
misspecification between the operating model and the as-
sessment model. Generally, the likelihoods with estimable
weighting within the assessment outperformed the itera-
tively weighted likelihoods. More specifically, the Dirichlet-
multinomial likelihoods performed optimally at small sam-
ple sizes or when there was little model misspecification, and
the logistic-normal likelihoods performed optimally when
there was significant model misspecification conditional on
the composition sample size being at least moderate to
large.

Herein, we aim to extend the analysis presented by Fisch et
al. (2021) by empirically evaluating the performance of stock
assessments under different likelihood formulations. We do
this by incorporating alternative likelihoods for composi-
tion data within stock assessments of two managed species
within the USA and Canada and compare their performance
using various model evaluation criteria common to stock
assessment (Carvalho at al. 2021; Kell et al. 2021). Specifi-
cally, we examine the best performing likelihoods from Fisch
et al. (2021), which were the additive logistic-normal with
a first-order autoregressive (AR(1)) parameterization of the
variance–covariance matrix and two parameterizations of the
Dirichlet-multinomial likelihood, one with an effective sam-
ple size (ESS) that linearly scales with the actual sample size
and one with an ESS that saturates as the actual sample
size increases. Given the findings of Fisch et al. (2021) with
respect to the sample size of the composition data, we fo-
cused our efforts on two stock assessments at opposite ends
of the spectrum with respect to the number of fish aged
for composition data from the fishery: cobia (Rachycentron
canadum; SEDAR 2020) whose age-composition sample size
is comparatively small, and Pacific hake (Merluccius productus;
Grandin et al. 2020), whose fishery age-composition surpasses
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Fig. 1. Data availability in each year for each stock assessment. Each symbol denotes a year of data available for a different
source, with the source identified below the symbols. The pooled length composition is depicted as an unbroken line to reflect
the fact that it is a pooled data source across years.

thousands of fish aged over many years. This approach func-
tions as an empirical evaluation of the Fisch et al. (2021) simu-
lation study. Given the results of Fisch et al. (2021), we hypoth-
esize that the logistic-normal likelihood will perform poorly
in the cobia assessment and comparatively well in the Pacific
hake assessment (assuming at least a moderate degree of pro-
cess error).

2. Methods
Our general approach was to fit each stock assessment

model using different composition likelihoods and to use var-
ious model comparison/diagnostic criteria to evaluate com-
parative performance. Given the logistic-normal likelihood
is continuous and the Dirichlet-multinomial is discrete, the
models cannot be compared using information criterion
measures such as the widely applicable information criterion
(WAIC; Watanabe 2010) or Pareto-smoothed importance sam-
pling leave one out criterion (PSIS-LOO; Vehtari et al. 2017).
For this reason, we chose to compare models via a suite of
diagnostic/comparison criteria, by first evaluating point es-
timates and uncertainty, and subsequently fits to data, pos-
terior profiles of data likelihood components, retrospective
analyses, and hindcasting. Technical details of the cobia and
the Pacific hake stock assessments can be found in SEDAR
(2020) and Grandin et al. (2020), respectively. In the following
sections, we briefly summarize these details. Our goal was to
keep our assessment models as similar as possible to these re-
spective, published benchmarks as these formulations have
passed reviews by panels comprising independent experts, as
well as by science and statistical committees that advise the
management process.

2.1. Cobia
The cobia stock assessment (SEDAR 2020) was fit to com-

mercial landings, general recreational landings, a recre-
ational fishery headboat index, age-composition from the
recreational fishery, and a pooled length composition from
the commercial fishery (Fig. 1). The assessment was age struc-
tured, modeling ages 1–16+, from 1986 to 2017. The as-
sessment model included two fleets (commercial and recre-
ational) and estimated 120 parameters, in addition to com-
position weighting parameters (discussed below). Parameters
estimated included initial fishing mortality (used to calculate
an initial equilibrium age structure), initial abundance devi-
ations from equilibrium for ages 2 through the plus group
at 16 (15 parameters), initial fishing mortality, yearly recruit-
ment deviations (30 parameters), mean fully selected fishing
mortality for each fleet (two parameters), fully selected fish-
ing mortality deviations in each year for each fleet (62 param-
eters), the coefficient of variation (CV) of length at age from
the commercial landings, unfished recruitment, the standard
deviation (SD) of log-recruitment, catchability for the head-
boat index, logistic selectivity parameters for the commercial
fishery (two parameters), and two blocks of logistic selectiv-
ity parameters for the recreational fishery (four parameters).
Natural mortality at age was assumed time-invariant and was
fixed at estimates calculated from Charnov et al. (2013) us-
ing parameters from a von Bertalanffy growth function (von
Bertalanffy 1957). The stock–recruitment relationship was
modeled using the Beverton–Holt formulation (Beverton and
Holt 1957) with steepness fixed at 0.99. Removals and index
data were both fit with lognormal likelihoods. The removals
from each fleet assumed CVs of 0.05 each and the relative
variance between years for the index data was prespecified
at estimates calculated during standardization. Informative
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Table 1. Estimated parameters for each assessment model, including prior specification.

Description Symbol Prior

Cobia

Unfished recruitment (log scale) R0 U[10, 16]

SD of recruitment σ R N[0.6, 0.152]

Recruitment deviations (31, log scale) δy, R N
[
0, σ 2

R

]
Initial abundance deviations (15, log scale) δa, Ninit U[−5, 5]

Initial fishing mortality finit N[0.005, 0.001252]

Mean fully selected recreational fishing mortality (log scale) f̄y,rec U[−10, 0]

Recreational fishing mortality deviations (32, log scale) δy, frec U[−10, 10]

Mean fully selected commercial fishing mortality (log scale) f̄y,comm U[−10, 0]

Commercial fishing mortality deviations (32, log scale) δy, fcomm U[−12, 12]

Index catchability (log scale) q U[−16, −4]

Recreational selectivity age at 50% selected block 1 mrec, 1 U[0.1, 15]

Recreational selectivity slope block 1 krec, 1 N[2, 1.12]

Recreational selectivity age at 50% selected block 2 mrec, 2 U[0.1, 15]

Recreational selectivity slope block 2 krec, 2 N[2, 1.12]

Commercial selectivity age at 50% selected mcomm N[3.3, 1.1552]

Commercial selectivity slope kcomm N[2, 1.12]

CV of length at age for commercial landings CVL U[0.05, 0.5]

Pacific hake

Unfished recruitment (log scale) R0 U[13, 17]

Steepness h Beta[9.76, 2.8]

Recruitment deviations (75, log scale) δy, R N[0, 1.42]

Natural mortality (log scale) M N[−1.6, 0.12]

Fishing intensity (55, log scale) fy U[−10, 0]

Fishery selectivity (5) pa U[− 5, 9]

Selectivity deviations (150) εa, y N[0, 1.42]

Additive SD of index (log scale) σ Index U[−3, 0.2]

Survey selectivity (4) pa, s U[−5, 9]

Composition weighting parameters

Dirichlet-multinomial overdispersion (2, log scale) θ |β Cobia——U[−10, 10]

Hake——N[0, 1.8132]

Logistic-normal SD (2, log scale) σ LN U[−5, 5]

Logistic-normal Phi (2) ϕ U[−1, 1]

Note: Parentheses identify the number of parameters estimated for a group. Composition weighting parameters refer to both stock assessments.

priors were placed on recruitment variance, recruitment de-
viations, initial fishing intensity, and most selectivity param-
eters (Table 1).

In the benchmark assessment (SEDAR 2020), the index data
were weighted iteratively until the SDs of the normalized
residuals were near 1. When incorporating alternative com-
position likelihoods into the assessment, we did not repeat
this procedure as we wanted to observe how the fit to the
index data might change when the composition likelihood
changed. In addition, when incorporating the logistic-normal
into the cobia assessment, the logistic selectivity for the com-
mercial fleet was initially estimated at implausible selectiv-
ity values and resulted in nonconvergence of the model. To
remedy this, we place a weakly informative prior on the
age at 50% vulnerability according to a normal probability
density with a mean of 3.3 and a CV of 0.35 (previously it
was ∼U[1, 10]). This is undesirable and a demerit against the
logistic-normal likelihood model for cobia. For the purposes

of consistency, we incorporated this prior into the Dirichlet-
multinomial fits of the cobia assessment as well.

The sample size for composition data of the recreational
fishery was fewer than 100 individuals for a large part of
the first half of the time series. During latter years, it in-
creased to a maximum of 484 although generally remained
around 250 individuals aged (Fig. 2). The recreational age-
composition data utilized in the assessment were expanded
through weighting the age samples by state landings to pro-
vide an age-composition representative of the entire fleet
across states. The pooled commercial length composition for
the time series had a sample size of 1449 individuals.

2.2. Pacific hake
The Pacific hake stock assessment (Grandin et al. 2020) was

fit to fishery harvest, the age-composition of the harvest, a hy-
droacoustic survey index, and age-composition sampled dur-
ing the survey. It was an age structured assessment, model-
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Fig. 2. Composition sample sizes and estimated ESSs for each assessment. The top row depicts the recreational age composition
sample size and ESSs of the cobia assessment in the first two columns and the pooled length composition sample sizes in the
third. The second row depicts the fishery age composition sample sizes and ESSs of the Pacific hake assessment in the first
and second columns and the survey age composition sample sizes in the third. Shown are medians and 95% highest posterior
density (HPD) intervals for the Dirichlet-multinomial linear formulation (DML; green) and the Dirichlet-multinomial saturating
formulation (DMA; blue) models. [Colour online.]

ing ages 0–20+, from 1966 to 2020. The assessment modeled
one fishery fleet and one survey fleet. In addition to composi-
tion weighting parameters, the model estimated 293 param-
eters including unfished recruitment, steepness, recruitment
deviations (75 parameters), a time- and age-invariant natural
mortality parameter, fishing intensity in each year (55 param-
eters), fishery selectivity parameters (five parameters), selec-
tivity deviations (150 parameters), survey selectivity parame-
ters (four parameters), and an additive SD term for the survey
index. The model incorporated time-varying fishery selectiv-
ity by estimating year- and age-specific deviations in the years
1991–2020. The assessment also included year-specific ageing
error matrices, calculated outside of the model. The only dif-
ference from the assessment of Grandin et al. (2020) and that
done in this study is that a fully selected fishing mortality pa-
rameter (fishing intensity) was estimated for each year as op-
posed to employing the “hybrid” approach in Stock Synthesis
(Methot and Wetzel 2013). The acoustic survey was fit using
a lognormal likelihood with an estimated SD added to the
observed sampling variability (obtained via kriging; Grandin

et al. 2020). The harvest was also fit with a lognormal likeli-
hood assuming a very small SD (0.01). Informative priors were
placed on natural mortality, steepness, recruitment devia-
tions, and selectivity deviations (and Dirichlet-multinomial
composition parameters (defined below); Table 1).

The sample size for the fishery composition reported in the
Pacific hake stock assessment (Grandin et al. 2020) was char-
acterized by the number of trips sampled. This number aver-
aged ∼200 trips sampled for the first half of the time series
but surpassed 1000 trips sampled in many years toward the
end of the time series (Fig. 2). An examination of tables 5–8
in Grandin et al. (2020) suggests that in the latter 10 years
of the time series, the annual number of fish sampled fluctu-
ated between 3000 and 6000 for the US fleets, which make up
the largest proportion of the catch. This puts the number of
fish sampled in each year at levels between the moderate and
large treatments from Fisch et al. (2021). The sampled catch
at age data for the fishery were preprocessed prior to incorpo-
ration of the assessment to consider the sampling protocols
used to collect them. A full description of the analytical steps
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for expanding the age-compositions can be found in Taylor
et al. (2014). For the acoustic survey, the composition sample
size presented references the number of tows conducted by
the integrated acoustic trawl survey and averages ∼70 tows
in each year the survey was implemented.

2.3. Composition likelihoods

2.3.1. Dirichlet-multinomial

Each benchmark assessment utilized the Dirichlet-
multinomial likelihood for composition data. Specifically,
they each used the linear formulation. We abbreviate this
formulation hereinafter in the text using “DML”. This formu-
lation of the likelihood results in an ESS for composition data
that scales linearly with the true sample size. The negative
log-likelihood for this formulation is found using

NLL

= −
∑

y

[
log

[
�

(
Ny + 1

)] −
∑

a

{
log

[
�

(
NyPa,y + 1

)]}
+log

[
�

(
θNy

)] − log
[
�

(
Ny + θNy

)]
+

∑
a

{
log

[
�

(
NyPa,y + θ NyP̂a,y

)] − log
[
�

(
θ NyP̂a,y

)]}]
(1)

where P̂a,y represents the predicted composition proportion
for a given age (a) and year (y), Pa,y the observed composition
proportion, Ny the sample size in each year, and θ denotes
a Dirichlet-multinomial overdispersion parameter estimated
within the assessment. The Dirichlet-multinomial necessi-
tates one overdispersion parameter per composition data
source, and thus, each assessment estimated two Dirichlet-
multinomial overdispersion parameters. The ESS for this for-
mulation can be found using ESSy = (1 + θNy)/(1 + θ ). Fisch et
al. (2021) suggested that using the Dirichlet-multinomial sat-
urating parameterization might improve performance; thus,
we incorporated this likelihood into the assessments as our
second evaluated likelihood. We abbreviate the saturating or
asymptotic formulation hereinafter in the text using “DMA”.
This formulation results in an ESS that asymptotes as true
sample size increases.

NLL

= −
∑

y

[
log

[
�

(
Ny + 1

)] −
∑

a

{
log

[
�

(
NyPa,y + 1

)]}
+log [� (β )] − log

[
�

(
Ny + β

)]
+

∑
a

{
log

[
�

(
NyPa,y + βP̂a,y

)] − log
[
�

(
βP̂a,y

)]}]
(2)

Differences between the saturating and linear formulations
simply include substituting the weighting parameter β for
instances of θNy and multiplying each term in the above ESS
equation by Ny. This removes the linear scaling between the
ESS and the true sample size and allows instead for a saturat-
ing function ESSy = (Ny + Nyβ)/(Ny + β) (Thorson et al. 2017).

2.3.2. Logistic-normal

The third likelihood we evaluated was the logistic-normal
(Schnute and Richards 1995; Aitchison 2003; Francis 2014). A
composition conforms to a logistic-normal distribution with
parameters [P, C] when Pa = (

eXa/
∑

a eXa
)
. In this case, X con-

forms to a multivariate normal distribution with mean log(P)
and covariance matrix C. The logistic-normal is a continuous
distribution (where the Dirichlet-multinomial is discrete) and
is theoretically able to account for correlations between bins
by specifically parameterizing the variance–covariance ma-
trix to do so (although the correlations are on the original
multivariate normal scale; Francis 2014). In this study, we ex-
plored the performance of a first-order autoregressive, AR(1),
parametrization of the variance–covariance matrix. This pa-
rameterization necessitates two parameters per composition
data source: σ LN and ϕ. Incorporating this likelihood into
each assessment required the estimation of two more param-
eters than each formulation of the Dirichlet-multinomial.
Weighting between years based on composition sample size

was achieved using Wy =
√

N̄/Ny, where N̄ denotes the mean
sample size over the time series and σ LN,y = σ LNWy, as in
Francis (2014). This allows the variance term, σ LN,y, to vary
by year, which results in a unique variance–covariance ma-
trix each year, while the correlations between bins, ρ |a − a′ |,
are treated as constant over time. The variance–covariance
matrix in each year, Cy, is calculated using Cy,a,a′ = σ 2

LN,yρ|a−a′|,
where ρ |a − a′ | = ϕ |a − a′ | for an AR(1) process. The negative log-
likelihood can then be found using eq. A9 in Francis (2014):

NLL

=
∑

y

[
0.5 (Nb − 1) log (2π ) +

∑
a

[
log

(
Pa,y

)]
+0.5log

(|Vy|
) + (Nb − 1) log

(
Wy

) +
(
wT

y Vy
−1wy

)
2W 2

y

⎤⎦
(3)

where Vy = KCyKT, K is a matrix with dimensions [(Nb − 1),
Nb] formed by adding a vector of −1s to the right side of an
identity matrix with dimensions [Nb − 1, Nb − 1] , and w is a
matrix where each row depicts a year and contains a vector

of length (Nb − 1), filled using wa,y = log
(

Pa,y

PNb,y

)
− log

(
P̂a,y

P̂Nb,y

)
for a in 0, 1, 2,…, Nb – 1. The term Nb refers to the num-
ber of bins in a composition data set. Hereinafter, we ab-
breviate the logistic-normal models with an AR(1) variance–
covariance matrix in the text using “LN”. Note that for the Pa-
cific hake assessment, informative priors were placed on the
Dirichlet-multinomial overdispersion parameters where dif-
fuse uniform priors were placed on the parameters from the
logistic-normal (Table 1). Diffuse uniform priors were placed
on all composition weighting parameters for the cobia assess-
ment.

2.4. Comparison criteria
We first examined sensitivity of estimated management

quantities and their uncertainty to the specified likelihood
formulation. We focused on estimates of depletion, spawning

C
an

. J
. F

is
h.

 A
qu

at
. S

ci
. D

ow
nl

oa
de

d 
fr

om
 c

dn
sc

ie
nc

ep
ub

.c
om

 b
y 

N
O

A
A

 C
E

N
T

R
A

L
 o

n 
01

/1
8/

24
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 

http://dx.doi.org/10.1139/cjfas-2022-0036


Canadian Science Publishing

Can. J. Fish. Aquat. Sci. 79: 1745–1764 (2022) | dx.doi.org/10.1139/cjfas-2022-0036 1751

biomass, and exploitation rate for each assessment as these
are generally of interest in making management decisions.
Uncertainty was assessed via 95% HPD intervals in addition to
using posterior CVs, defined as the SD of the posterior distri-
bution divided by the median. These observations have little
bearing on the diagnoses of which likelihood performed opti-
mally, as a model with different point estimates or more/less
uncertainty is not necessarily a better performing model than
another. An exception to this may be if the point estimates
or the bounds of uncertainty are implausible.

For model comparison or determination of an optimal
composition likelihood for each assessment, we evaluated fits
to the data sources, posterior profiles of data components,
retrospective analyses, and hindcasting. Each of these diag-
nostics is detailed below.

2.4.1. Fits to data

We evaluated fits to the abundance indices for each assess-
ment using the SD of the normalized residuals (SDNRs, Breen
et al. 2003; Francis 2011; Carvalho et al. 2017) and a non-
parametric runs test (Wald and Wolfowitz 1940). A relatively
good model fit is characterized by a SDNR near 1 (Carvalho
et al. 2017), although Francis (2011) notes that a value much
less than 1 is not a cause for concern, but rather means that
the data set is fitted better than was expected. A runs test is
meant to assess whether the sign of the residuals is random
with respect to time. A nonrandom pattern of residuals can
potentially indicate model misspecification (Carvalho et al.
2017). For model comparison, we would interpret a model
with a larger SDNR (specifically above 1) and (or) a model
whose abundance index residuals indicate nonrandomness
with respect to time as a worse-fitting model. Given that the
Pacific hake assessment included an estimable parameter as
an additive SD component meant to account for sources of
process and sampling error in the acoustic index (Grandin et
al. 2020), we also examined the magnitude of this parameter
for each likelihood. We focused on abundance index data as
it has been suggested that these data should have primacy
when evaluating fits to multiple data sources given that they
provide the most direct information about changes in abun-
dance (Francis 2011, 2017).

We specifically examined fits to the composition data as a
model diagnostic rather than a comparison tool for the differ-
ent likelihoods, because the goal of incorporating different
self-weighting composition likelihoods into the assessments
was to allow each model to decipher how much combined
sampling error and process error existed with respect to
compositions. To achieve this, we calculated the root-mean-
squared error (RMSE) of individual age bins for the fits to each
of the composition data sets.

RMSEa =

√√√√√
∑

y

(
Pa,y − P̂a,y

)2

n
(4)

where Pa,y denotes an observed composition data point in
year y at age a, P̂a,y a predicted composition, and n the num-

ber of years in the data set. We performed runs tests on the
residuals of composition data using the mean observed and
expected ages, Ōy = ∑

a Pa,y × a and Ēy = ∑
a P̂a,y × a, respec-

tively. In addition, we visually examined the correlations in
residuals between age bins for each age-composition data
set and compared them with those that would be expected
from each likelihood. Finally, we simulated prior and poste-
rior predictive distributions for the index and composition
data sources and examined the number and percentage of
data points that were outside of 95% HPD intervals for each
model.

We did not evaluate fits to removals because the assess-
ment models were configured to fit them precisely, in effect
treating removals as known.

2.4.2. Posterior profiles

Likelihood profiles are common model diagnostics em-
ployed in stock assessments fit in a maximum likelihood
framework (Ichinokawa et al. 2014; Lee et al. 2014; Wang
et al. 2014; Carvalho et al. 2021). They function by fixing a
key parameter at various levels around its maximum likeli-
hood estimate, re-estimating the remaining parameters, and
examining the change in values of various likelihood compo-
nents, most often those concerned with data. A large change
in the likelihood value of a specific data component as the
level of a key parameter varies is indicative of an informative
data source for that specific parameter. In addition, the loca-
tion of minima for the different individual likelihood values
can suggest data conflicts if the minima are in very different
locations for the parameter. Given our assessments were fit
in a Bayesian framework using Markov chain Monte Carlo
(MCMC), the model output already contained samples of key
parameters across a range of values. For this reason, we exam-
ined posterior profiles by evaluating the posterior density of
unfished recruitment with respect to the marginal posterior
distributions of the negative log-likelihood values for each
data component. To clarify, we did not fit any additional mod-
els as would be done in a maximum likelihood profile sense.
We simply examined the posterior distributions of the nega-
tive log-likelihood values for each data component (and the
prior for recruitment deviations) relative to MCMC values for
unfished recruitment. We focused our posterior profiles on
unfished recruitment, a key scaling parameter, which was es-
timated in each stock assessment. When comparing the per-
formance of each likelihood, we anticipate large data con-
flicts as indicative of a worse performing model. In addition,
we were interested in whether using different composition
likelihoods changed the perception of information content
in various data sources. For example, differences in the like-
lihood values of data components as unfished recruitment
varies could suggest different levels of information content
elucidated by the different likelihoods.

2.4.3. Retrospective analyses

We performed retrospective analyses by successively re-
moving 1, 2, …, or 5 consecutive years of data from the end
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of the time series and refitting each assessment. This resulted
in five “peels” fit to the reduced data sets for each stock
assessment. Retrospective statistics were then calculated by
comparing estimates from the terminal years of each peel to
the respective year from the full assessment. We evaluated
Mohn’s rho (Mohn 1999) as the mean relative difference for
the terminal year of each peel compared with the full assess-
ment.

ρ = 1
p

p∑
i=1

X (i)
T−i − X̂T−i

X̂T−i
(5)

where p refers to the number of peels, T refers to the terminal
year in the full model, X (i)

T−irefers to a quantity in year T − i
from a peeled assessment fit with i number of years of data re-
moved, and X̂T−i refers to a quantity from the full or reference
assessment (in year T − i). It has been suggested that a large ρ

can be indicative of model misspecification (Hurtado-Ferro et
al. 2014). However, equal divergence from the full model over
peeled years in positive and negative directions can result in
the mean calculation producing a small ρ. Where this may
allay concerns of severe model misspecification, one could
argue a model whose peels diverge a greater amount from
the full reference assessment is a worse performing model.
For this reason, we also evaluated the mean absolute relative
difference over peels (Fisch et al. 2019):

λ = 1
p

p∑
i=1

|X (i)
T−i − X̂T−i|

X̂T−i
(6)

This metric considers the difference in estimates in the final
year of each peel compared with the reference assessment as
opposed to whether or not there is a consistent pattern. Ret-
rospective statistics were calculated for estimates of spawn-
ing biomass for each assessment. We interpret a model with
smaller retrospective statistics as a preferential model over
another.

2.4.4. Hindcasting

Similar to retrospective analysis, hindcasting refers to the
process of leaving data points out at the end of a time series
and refitting the assessment. The difference lies in that hind-
casting focuses on predicting the data points left out to evalu-
ate predictive skill (Kell et al. 2016; Kell et al. 2021). Hindcast-
ing was implemented for index data, composition data from
the fishery, and survey composition data (solely for hake), sep-
arately. We removed the final three data points of index data
and the final 5 years of composition data from the fishery
from each assessment. We also removed the final 3 years of
survey composition data solely for Pacific hake. Thus, eight
additional models were fit to the reduced data sets for co-
bia, and 11 for Pacific hake. The approach was to leave con-
secutive data points out and to assess prediction skill of the
data, which were left out using the mean absolute scaled er-
ror (MASE; Hyndman and Koehler 2006). This has been called
model-free hindcasting (Kell et al. 2016; Kell et al. 2021) and
does not require a model forecast. Contrary to the retrospec-

tive models, the hindcasted assessments were still run for the
full time series and estimated all parameters. The exception
to this was for the Pacific hake model for the hindcasted fish-
ery composition where, if a year of data was removed the fish-
ery selectivity deviations for that year were not estimated.
Commonly, hindcasting specifies a prediction horizon, h. In
our hindcasts, the prediction horizon was simply equivalent
to the number of data points left out. For example, in the
model which was fit to a data set with the final 2 years of
composition data removed, the prediction horizon was 2. The
MASE score calculates an evaluation of prediction skill rela-
tive to a naïve baseline prediction, and for a given data source
d and prediction horizon h, is calculated as

MASE(d)
h =

1
h

T∑
t=T−h+1

|E (d)(h)
t − O(d)

t |

1
h

T∑
t=T−h+1

|O(d)
t−1 − O(d)

t |
(7)

where T once again refers to the terminal year in the assess-
ment (the same for hindcasts and the full assessment), O(d)

t

denotes an observed data point of type d in time t and E (d)(h)
t ,

calculated as a function of estimated parameters in the hind-
casted assessment model, denotes a predicted data point of
type d in time t from a hindcasted assessment fit with the
terminal h data points of type d removed. The abundance in-
dex hindcast MASE calculations utilized the log of the pre-
dicted and observed data points where the age-composition
hindcast MASE calculations were calculated using the mean
observed and expected ages (defined in Section 2.4.1. Fits
to data). Commonly, the naïve prediction used to calculate
MASE is a random walk where Ot = Ot−1 (Hyndman and
Koehler 2006; Carvalho et al. 2021; Kell et al. 2021), i.e., the
next observed data point is the same as the previous. We em-
ployed this same naïve prediction in our analysis. A predic-
tion is said to have skill if its MASE is less than 1, i.e., it im-
proves the model prediction compared with the baseline. For
example, a MASE score of 0.5 suggests that the model predicts
twice as accurately as the naïve prediction. Used for model
comparison, we interpret a model with lower MASE scores as
a better performing model.

2.5. Fitting
Each assessment was developed and fit using Automatic

Differentiation Model Builder (ADMB; Fournier et al. 2012).
Assessments were run in a Bayesian framework with pa-
rameters and priors identified in Table 1. The cobia as-
sessment models were run for 10 million iterations and
the Pacific hake models were run for 50 million iterations.
Each assessment consisted of a single chain and utilized the
Metropolis–Hastings algorithm. Convergence was evaluated
using Geweke’s diagnostic (Geweke 1991) at an alpha level of
0.05. The first 15% of each chain was removed for burn in and
every 1000th iteration was saved. Where calculations require
point estimates from the models, we utilized the median of
the MCMC chain. Finally, although we cannot compare the
Dirichlet-multinomial to the logistic-normal models with in-
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formation criteria, we can compare each parameterization
of Dirichlet-multinomial to one another. Thus, we also com-
pared the linear with the saturating parameterization using
WAIC and PSIS-LOO.

2.6. Sensitivity runs
To explore whether particular specifications of each assess-

ment affected our results, we explored a few different sensi-
tivity analyses. For the cobia assessment, to test sensitivity to
the iterative reweighting procedure of the index, we ran the
assessment models employing iterative reweighting of the in-
dex data until its SDNR was approximately 1 (the procedure
employed in the benchmark cobia assessment) for each like-
lihood. In addition, we ran the cobia assessment models with
an additional estimated parameter meant to be an additive
SD component for fitting to the index, similar to the param-
eterization of the index fit in the Pacific hake assessment.

To assess sensitivity to the prior specifications of the
overdispersion parameters for the Dirichlet-multinomial
models in the Pacific hake assessment, we ran the DML
and DMA models for hake with uniform priors (U[−10, 10])
placed on the overdispersion parameters. We also ran the
Pacific hake Dirichlet-multinomial assessments using a uni-
form prior solely for the fishery composition overdispersion
parameter (where the informative prior remained for the sur-
vey parameter). To examine sensitivity to the input sample
size for fishery composition in the Pacific hake assessment,
we ran the DMA model with the input sample size for the
fishery multiplied by 5 (in essence converting the number of
trips sampled to approximate number of fish sampled). We
also ran each assessment with full weight given to the in-
put sample sizes, where the overdispersion parameters were
not estimated and ESS equaled the input sample size. Finally,
we examined the sensitivity to initial parameter values for
each assessment by rerunning them starting at the posterior
medians for alternative likelihoods. For example, we started
the Pacific hake LN assessment at the median parameter es-
timates for the posterior distribution of the DML model and
vice versa.

3. Results

3.1. Convergence, point estimates, and
uncertainty

Most parameters (∼95%) for each assessment model con-
verged based on Gewekes’ diagnostic at an alpha level of
0.05. Although estimates of depletion for the time series in
the cobia assessment were consistent across likelihoods, es-
timates of spawning biomass and exploitation rate differed
substantially as a function of composition likelihood speci-
fication (Fig. 3). The LN model led to consistently lower esti-
mates of spawning biomass and larger estimates of exploita-
tion rate throughout the time series compared with the other
assessments, where the DMA model estimated a much larger
spawning biomass and a much lower exploitation rate than
both the DML and LN models. In addition, for spawning
biomass and exploitation rate, the posterior CVs were simi-
lar for the LN and DML models where they were much larger

for the DMA model (Fig. S1). Models had similar posterior CVs
for depletion, although the LN model estimates were slightly
larger than the others.

In the Pacific hake assessment, the LN and DML models
produced very similar estimates throughout most of the time
series but diverged considerably from one another in the fi-
nal 10 years. In the terminal years, the LN model estimated a
much larger degree of spawning biomass, a smaller exploita-
tion rate, and a less depleted stock (Fig. 3). The DMA model
estimates of depletion, spawning biomass, and exploitation
rate differed from those of the other two models early in the
time series, but converged with estimates of the LN model
to produce very similar estimates at the end of the time se-
ries. This suggests two different solution spaces, with the LN
flipping between them in 2010, as the LN matches DML esti-
mates from 1966 to 2009 and DMA estimates from 2010 to
2020. Uncertainty in terms of the range of 95% HPD intervals
was greater for the LN model at the end of the time series
than for the DMA and the DML. Posterior CVs were similar,
indicating that uncertainty was greatest for the LN model,
followed by the DMA, and then the DML model (Fig. S1).

3.2. Fits to data
Fits to each data source were visually acceptable (reason-

able fits with no clear residual patterns, Fig. 4, Figs. S2–S11),
and all SDNR values for fits to abundance index data were ap-
proximately 1 (Table 2). In the cobia assessment, the lowest
SDNR for index fits resulted from the DMA model, followed
by the DML and then the LN. In the Pacific hake assessment,
the lowest SDNR for index fits resulted from the LN model,
followed by the DMA, and the DML. The estimated additive
SD for the Pacific hake survey index was largest for the LN
model, followed by the DMA, and then the DML model. The
runs tests for each iteration of the MCMC chain indicated that
only 1%–2% of iterations in the cobia assessment exhibited
nonrandomness in residuals over the times series for fits to
the abundance index. Conversely, in the Pacific hake assess-
ment and specifically for the DML model, 19% of MCMC iter-
ations exhibited nonrandomness in residuals for fits to the
abundance index, where <4% of iterations exhibited nonran-
domness for the DMA and LN models.

The RMSE for fits to the recreational age-composition data
for the cobia assessment were generally lowest for the DML
and DMA models, where the LN resulted in larger RMSEs
(Fig. 4). The residuals for the fit to the pooled length com-
position were of similar magnitude across likelihoods. For
the Pacific hake assessment, the RMSE for fits to the fish-
ery age-composition was lowest for the DML, followed by the
LN, and then the DMA. Conversely, for fits to the survey age-
composition data, the RMSE was lowest for DMA, followed by
DML and LN (Fig. 4). The runs tests for age-composition fit in
the cobia assessment exhibited nonrandomness in residuals
for 5%, 12%, and 5% of MCMC iterations for the DML, DMA,
and LN models, respectively. In the Pacific hake assessment,
runs tests for fits to the fishery age-composition identified
nonrandomness in residuals for 22%, 5%, and 41% of MCMC it-
erations for the DML, DMA, and LN models, respectively. Simi-
larly, for the survey age-composition, the same models exhib-
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Fig. 3. Point estimates (medians) and 95% HPD intervals for depletion (spawning biomass/unfished), spawning biomass, and
exploitation rate from each assessment fit using different likelihoods for composition data. Results for the logistic-normal are
shown in red, the Dirichlet-multinomial linear formulation in green, and the Dirichlet-multinomial saturating formulation in
blue. Spawning biomass is measured in units of metric tons of mature females for cobia and kilograms of mature biomass for
Pacific hake. [Colour online.]

ited 30%, 27%, and 43% of MCMC iterations with nonrandom-
ness in residuals per the runs tests. The observed residual cor-
relation structure of each age composition data set showed
no consistent pattern (Figs. S12–S14), and neither matched
those expected from the Dirichlet-multinomial distributions
or from the logistic-normal (Fig. S15).

Prior and posterior predictive distributions for the index
and compositions data sources are presented in Figs. S21–
S32. For cobia, no data points were outside of 95% HPD in-
tervals of the prior predictive distributions for the headboat
index. The number of data points that were outside of the

95% HPD intervals for the prior predictive distributions of
the compositions was similar between the likelihoods, with
5, 2, and 7 for the DML, DMA, and LN for the pooled com-
mercial length composition, and 7, 6, and 8 for the recre-
ational age compositions, respectively. The number of data
points that were outside of the 95% HPD posterior predic-
tive distributions for the headboat index was 2, 2, and 0 for
the DML, DMA, and LN, respectively. For the pooled commer-
cial length composition, 7, 5, and 0 data points were outside
of the 95% interval for the DML, DMA, and LN models, re-
spectively (corresponding to 14.6%, 10.4%, and 0% of the data
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Fig. 4. (Top row) Fits to abundance indices for each assessment. Black points represent observed data, where the size of the
point is made relative to the inverse of the input standard error. Colored points denote medians and lines denotes 95% HPD
intervals. (Bottom two rows) RMSE for fits to the composition data sets. The RMSE shown for each composition fit (outside
of the pooled length composition) was calculated as the SD in residuals over years for each bin, and the median taken over
MCMC samples. Given the length composition was pooled, we instead depict the absolute value of the median residual for
each bin (and the sum of the absolute values of the residuals in legend text). The text in the upper right portion of each age
composition plot presents the percentage of MCMC iterations whose p-value < 0.05 for the runs test (reject null hypothesis of
randomness in residuals). A runs test was not performed for the pooled length composition. [Colour online.]

points for the length composition). For the recreational age
composition, 17, 16, and 10 data points were outside of the
95% interval for the DML, DMA, and LN models, respectively
(corresponding to 5.4%, 5.1%, and 3.2% of the data points
for the fishery composition). Considering all data sources to-

gether (including landings), the DML and DMA models ex-
hibited greater than 5% of data points outside of the 95%
HPD intervals for posterior predictive distributions, with 5.8%
of total data points outside of intervals for DML and 5.1%
for DMA.
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Table 2. SDNR values for fit to abundance indices for each assessment.

Likelihood SDNR of index Additive SD Runs test

Cobia

DML 1.001 (0.884, 1.141) NA 1

DMA 0.981 (0.862, 1.125) NA 1

LN 1.030 (0.876, 1.202) NA 2

Pacific hake

DML 1.044 (0.646, 1.446) 0.265 (0.141, 0.437) 19

DMA 1.037 (0.657, 1.453) 0.300 (0.154, 0.505) 3

LN 1.027 (0.646, 1.425) 0.338 (0.163, 0.579) 4

Note: Additive SD refers to the estimated additive SD term for the Pacific hake survey abundance index. Medians of the posterior distribution are reported with 95% HPD
intervals in parentheses. The runs test column presents the percentage of MCMC iterations whose p-value < 0.05 (reject null hypothesis of randomness in residuals).

For Pacific hake, prior predictive distributions were visu-
ally similar between the different models (Figs. S21–S23),
although the DML prior predictive distributions do appear
more informative than the DMA and LN for the oldest ages
(prior to the plus group) in each composition data source. The
number of data points that were outside of the 95% HPD in-
tervals for the prior predictive distributions was 0 for each
model for the index, 17, 0, and 11 for the DML, DMA, and
LN for the fishery composition, and 3, 0, and 1 for the sur-
vey composition, respectively. These results indicate that the
DML priors were the most informative for the compositions,
followed by the LN, and the DMA. The number of data points
that were outside of the 95% HPD posterior predictive dis-
tributions was 0 for each model for the index data. For the
fishery composition, 40, 33, and 18 data points were out-
side of the 95% interval for the DML, DMA, and LN mod-
els, respectively (corresponding to 5.7%, 4.8%, and 2.6% of
the data points for the fishery composition). For the survey
composition, 12, 8, and 6 data points were outside of the
95% interval for the DML, DMA, and LN models, respectively
(corresponding to 6.5%, 4.4%, and 3.3% of the data points
for the fishery composition). Considering all data sources to-
gether, only the DML model exhibited greater than 5% of data
points outside of the 95% HPD intervals for posterior predic-
tive distributions (with 5.5% of total data points outside of
intervals).

3.3. Retrospective analysis
For cobia, retrospective patterns and statistics were clos-

est to zero for the DML model (Fig. 5). This was followed by
patterns and statistics for the DMA and subsequently the LN
model. Each retrospective pattern indicated a positive bias in
spawning biomass as successive years of data were omitted.

Retrospective patterns and statistics indicated mixed per-
formance between the models for Pacific hake, where the LN
model produced ρ nearest to zero; however, the DML pro-
duced the smallest estimate of λ (Fig. 5). Both the LN and
the DML produced negative bias relative to the full assess-
ment for spawning biomass as successive years of data were
removed. The DMA model produced estimates farthest from
zero for each retrospective statistic by a wide margin and
instead estimated positive bias for spawning biomass peels
compared with the full assessment.

3.4. Hindcasting
MASE values for the cobia index data were lowest for the

DMA model across each prediction horizon (Table 3). This was
followed by the DML model and then the LN model. Most
MASE scores for the index data for cobia were below 1 (ex-
ception being h ≥ 2 for LN), meaning those versions of the
assessment are predicting the index more accurately than
the naïve prediction. Conversely, for the fishery composition
hindcasts, the MASE scores for each composition likelihood
were all above 1. The lowest MASE score for the fishery com-
position hindcasts depended on the prediction horizon, with
the DML having the lowest for h ≤ 2, the DMA having the
lowest for 2 < h ≤ 4, and the LN having the lowest for h = 5.

MASE scores for Pacific hake were the lowest with the DML
model across each prediction horizon for the abundance in-
dex data. This was followed by the DMA model and then the
LN model. The only model that predicted more accurately
than the naïve index (MASE < 1) was the DML. For the fishery
composition hindcast, the lowest MASE score depended on
the prediction horizon, with the DML producing the lowest
at h = 1, the LN at h = 2, and the DMA for h ≥ 3. Only one
MASE score was greater than 1 (DML when h = 3). Where the
LN only had the lowest MASE for h = 2, it produced the sec-
ond lowest for each of the other prediction horizons. For the
survey composition hindcast, the DML produced the lowest
MASE for h = 1, and the DMA produced the lowest for h >

1. The LN model had the largest MASE scores for the survey
composition hindcast, predicting more accurately than the
naïve prediction solely for h = 3.

3.5. Posterior profiles
Cobia profiles suggest that recreational fishery age-

composition, the prior on recruitment deviations, and each
of the landings data sources provided the most informa-
tion on unfished recruitment for each of the models (Fig.
6). Differences were small between the different composi-
tion likelihoods in terms of changes in likelihood values
as MCMC samples of unfished recruitment varied. However,
the LN model experienced a greater change in likelihood
value for the abundance index as unfished recruitment var-
ied than did each of the Dirichlet-multinomial models. Simi-
larly, for the recreational age-composition and recruitment
deviations, the change in likelihood values as unfished re-
cruitment varied was greatest for the DMA model, followed
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Fig. 5. Retrospective figures and statistics for the cobia (top row) and Pacific hake (bottom row) assessments. The symbol rho (ρ)
references Mohn’s rho (eq. 5), and the symbol lambda (λ) references the mean absolute relative difference over peels (eq. 6).
Spawning biomass is measured in units of metric tons of mature females for cobia and kilograms of mature biomass for Pacific
hake. Shaded areas denote 95% HPD intervals for each full assessment. [Colour online.]

Table 3. Hindcasted MASE values for each assessment model, calculated using the median of the
posterior distribution.

h DML DMA LN

Cobia

Hindcast Index 1 0.701 0.600 0.798

2 0.557 0.529 1.015

3 0.863 0.857 1.093

Hindcast Fishery Composition 1 4.01 13.62 30.19

2 1.38 1.53 2.65

3 1.65 1.63 3.41

4 1.57 1.41 2.71

5 1.66 1.59 1.49

Pacific hake

Hindcast Index 1 0.099 2.055 2.327

2 0.737 2.010 2.235

3 0.905 1.9 2.024

Hindcast Fishery Composition 1 0.41 0.68 0.6

2 0.55 0.94 0.46

3 1.08 0.4 0.86

4 0.78 0.56 0.62

5 0.88 0.67 0.88

Hindcast Survey Composition 1 0.08 1.67 1.14

2 1.16 1.10 1.94

3 0.44 0.27 0.76

Note: The symbol h denotes the number of data points, which were predicted for each hindcast.
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Fig. 6. Cobia posterior profile. The top row depicts the marginal posterior distributions for each likelihood contribution, iden-
tified by the panel heading. The bottom row (with exception to the last column) depicts the joint posterior of each likelihood
contribution and the log of unfished recruitment. Points denote locations of minima of each respective likelihood compo-
nent. The last column of the final row depicts the marginal posterior distributions of the log of unfished recruitment for each
likelihood. Results for DML are presented in green, for DMA in blue, and for LN in red. [Colour online.]

by the DML and the LN models. Variability regarding the lo-
cations of R0 at each of the likelihood minima about the me-
dian estimate of R0 was least for the LN model, followed by
the DML and then the DMA model (Table S3).

Pacific hake profiles suggest the fishery composition data,
recruitment deviations prior, harvest data, followed by the
survey composition data provided the most information
on unfished recruitment for each likelihood. Mostly, there
was little difference in the change in individual likelihood
scores across composition likelihoods, with exceptions for
survey index and survey composition, which exhibited larger
changes in likelihood scores for the LN and DMA compared
with the DML as MCMC samples of unfished recruitment var-
ied. Locations of R0 at the individual likelihood component
minima for each data source were quite variable across each
of the composition likelihood models with the minima of
fishery composition and abundance index data generally in
similar locations and the minima of harvest and survey com-
position in similar locations (but different to index and fish-
ery composition). This pattern seemed consistent across the
DML and LN composition likelihoods (Fig. 7). Although the
minima for harvest and survey composition data for DML sug-
gested greater unfished recruitment (as compared with the
minima for fishery composition and the index), it was the op-

posite for the LN model. For each of the models, the minima
for the recruitment deviations prior suggested the largest es-
timates of unfished recruitment across all components exam-
ined. Overall, the CV of the likelihood minima calculated as
a metric of variability of the locations of likelihood minima
about the median estimate of R0 was least for the LN model,
followed by the DMA, and then the DML model (Table S3).

3.6. Information criteria and ESS
For the cobia assessment, the estimated ESS for the recre-

ational fishery age-composition was much lower in the latter
half of the time series for the DMA than for the DML (Fig.
2). A similar result occurred in the Pacific hake assessment,
where for the fishery composition, the estimated ESS specif-
ically for the latter half of the time series was much lower
for the DMA than for the DML. Conversely, the ESSs of DML
and DMA were similar to one another for the pooled length
composition (in the cobia assessment) and for the survey age-
composition (in the hake assessment). Information criteria
measures WAIC and PSIS-LOO were each lower for the DML
model in both the cobia and Pacific hake assessments. In the
cobia assessment, the difference in criterion values between
the likelihoods was 11 for WAIC and 10.4 for PSIS-LOO. In the
Pacific hake assessment, these differences were 487 051 and
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Fig. 7. Pacific hake posterior profile. The top row depicts the marginal posterior distributions for each likelihood contribu-
tion, identified by the panel heading. The bottom row (with exception to the last column) depicts the joint posterior of each
likelihood contribution and the log of unfished recruitment. Points denote locations of minima of each respective likelihood
component. The last column of the final row depicts the marginal posterior distributions of the log of unfished recruitment
for each likelihood. Results for DML are presented in green, for DMA in blue, and for LN in red. [Colour online.]

5804 units, respectively. Although the diagnostic measures
reported for each criterion suggested both WAIC and PSIS-
LOO may be unreliable in this case (Vehtari et al. 2017).

3.7. Sensitivity
The cobia assessments fit under the different likelihoods

were insensitive to both the iterative reweighting procedure
for the index data and to estimating an additional parame-
ter as an additive SD for the index, producing nearly equiva-
lent results to those already presented in this study (Fig. S19).
In addition, the DMA model for the Pacific hake assessment
was largely insensitive to increases in the input sample sizes
for composition data, producing results very similar to the
model fit to the baseline input sample sizes (Fig. 2). The cobia
assessment model fit with full weight given to the input sam-
ple sizes did result in spawning biomass point estimates that
differed from both the DMA and the DML models, produc-
ing initial spawning biomass similar to the DML model; how-
ever, terminal estimates very similar to those from the DMA
model (Fig. S20). Conversely, the Pacific hake model fit with
full weight given to the input sample size produced nearly
identical point estimates of spawning biomass as the DML
model.

The Pacific hake assessment fit with uniform priors for the
DML and DMA overdispersion parameters for the fishery and

survey did not converge according to Geweke’s diagnostic;
however, when the uniform prior was solely placed on the
overdispersion parameter for the fishery (and the informative
prior remained for the survey), results were nearly identical
to those presented in this study (and thus insensitive).

Each cobia assessment was insensitive to the alternative
starting values, as was the Pacific hake DMA model. The al-
ternative starting parameter values for the Pacific hake DML
and LN assessments did result in large changes in model out-
put compared with those presented in this study, with each
model estimating larger spawning biomass levels at the end
of the time series (Fig. S18). However, for each of the alternate
solutions the negative log-likelihood values were larger than
those for the respective baseline solution presented in this
study (differences of 281 and 162 log-likelihood units at pos-
terior medians, respectively), indicating that these alternate
model solutions were suboptimal.

4. Discussion
This study compared likelihoods used for fitting compo-

sition data in stock assessment models through application
to cobia and Pacific hake. A key finding was that, simply
changing the likelihood, or even the formulation of the like-
lihood specified for composition data, led to considerable dif-
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ferences in model output in both the cobia and Pacific hake
assessments.

Clearly, the DML was the best performing model for the
cobia assessment. Compared with the LN model, it produced
better retrospective and hindcasting metrics and did not ne-
cessitate the addition of a weakly informative prior to con-
verge (on the age at 50% vulnerability for the commercial
fleet selectivity). This can be interpreted as a failure to re-
ject our hypothesis, that at small sample sizes, the Dirichlet-
multinomial is a more suitable likelihood for composition
data than the logistic-normal, consistent with Fisch et al.
(2021). Conversely, the poor performance of the DMA com-
pared with the DML parameterization in the cobia assess-
ment contrasted with the results of Fisch et al. (2021). Com-
pared with the DML, the DMA model produced larger infor-
mation criterion values, a degree of uncertainty large enough
(upper HPD interval ∼3× the point estimate) to render man-
agement decisions difficult, a much greater degree of variabil-
ity for likelihood minima with respect to unfished recruit-
ment (more data conflict), and more unfavorable retrospec-
tive statistics. In fact, given that retrospective patterns for the
LN and DMA models for cobia fall outside of the acceptable
range proposed by Hurtado-Ferro et al. (2014) for longer-lived
species (−0.15 < ρ < 0.20), it is likely these assessments would
not pass a statistical review.

Independent of the composition likelihood chosen, the co-
bia assessments estimated a relatively unexploited popula-
tion (depletion estimates were all ∼1). However, these as-
sessments differed greatly in scale, simply as a function of
the likelihood chosen for fitting composition data. Although
composition data are thought to mainly inform relative re-
cruitment, mortality, and selectivity, it is acknowledged that
they can indirectly inform estimation of the absolute scale
of abundance (Maunder 2011; Maunder and Piner 2015), as
fishing mortality in combination with known catch informs
absolute abundance (F ≈ Catch/Biomass). The results of this
study support that contention, as the choice of likelihood
for fitting compositions led to different fishing mortality es-
timates in the cobia example, and thus different estimates of
absolute abundance. This is further elucidated in the poste-
rior profiles, where the age composition data were the most
informative on the estimation of unfished recruitment.

For the Pacific hake assessment, the LN and the DML were
much more similar in comparative performance (although
not in output) than they were in the cobia assessment, where
the DMA model again demonstrated concerning retrospec-
tive patterns and statistics. For the LN and DML, retrospective
and hindcasting metrics were mixed, with the DML model
outperforming the LN for the acoustic survey hindcasting
(including the survey age-composition) and the opposite oc-
curring for most fishery composition hindcasts. Both the LN
model and the DMA model estimate an increasing abundance
trend for the final 5 years of the time series, treating the ter-
minal two data points for the survey index as underestimates
(Fig. 4). Conversely, the data for the survey index suggest a
decreasing trend in the index as does the fit from the DML
model. It is likely for this reason the LN and DMA hindcasted
models predicted the survey index poorly as indicated by the
MASE scores where the terminal 3 data points were sequen-

tially left out. Moreover, the LN and the DMA models allow
for more variance in the fit to the survey index, indicated by
their estimates of the additive survey SD (Table 2), although
their SDNR values were still approximately 1 (and lower than
DML). The LN and DMA models also allowed for more variance
in fits to the composition data from the fishery, indicated by
substantially lower estimates of ESS for the DMA (Fig. 2) and
larger residual variance for the LN model (Fig. 4). The tradeoff
lies in that they each estimate less variance in recruitment de-
viations than the DML model (Table S4) and suggest less data
conflict in unfished recruitment (Table S3).

The maximum likelihood fitting process in integrated as-
sessment models can be thought of as the partitioning of
the total error among data sets (Francis 2017; and likelihood
penalties if fit in a penalized likelihood context). Total er-
ror in this case includes both sampling error and process
error or model misspecification (including unaccounted for
random variation about biological processes, incorrect func-
tional forms, or fixed parameters, etc.). In a Bayesian context,
the error partitioning is expanded to also include deviations
from prior distribution specifications, partitioning the total
variance among all likelihood components specified. In the
Pacific hake assessment, this included data sets and prior
distributions, including those specified for time-varying pro-
cesses and for estimated parameters. The differences in out-
put between the Pacific hake model fit with the DML and that
fit with the LN emerged in the last 10 years of the time series
and can be explained with recourse to tradeoffs among like-
lihood components. It would appear that the LN and DMA
models are foregoing closely fitting the last two data points
in the abundance index (allowing for more variance in the
index and composition data) in favor of less variability in re-
cruitment deviations (more consistent with their prior spec-
ification) and less data conflict with respect to unfished re-
cruitment. This same pattern was found in the suboptimal
alternative DML solution, where the model was initialized at
parameter estimates from the LN model posterior.

The choice between DML or LN for Pacific hake is con-
sequential, as they output markedly different terminal esti-
mates of depletion, spawning biomass, and exploitation rate,
and given the stock is managed via a 40:10 harvest control
rule (Grandin et al. 2020), the total allowable catch will sub-
stantially differ as a function of the composition likelihood
chosen. If we were to follow the recommendations of Francis
(2011, 2017), that abundance index data should be given pri-
macy in integrated assessment model fitting, we might con-
clude that the DML performed better than the LN given that
it fit the abundance index data more closely and provided
more accurate predictions of the index in the hindcasted
models. However, conversely, if the latter two data points of
the survey are due to unaccounted for sampling error, or if
the model is misspecified with respect to the survey index, an
argument could be made that the LN model is accounting for
that process or sampling error more appropriately (by some-
what ignoring the latter two points). A conservative interpre-
tation would be that in the absence of significant evidence
of additional sampling error or model misspecification with
respect to the last two index points (e.g., the survey changed
tactics or spatial coverage), it may be safer to move forward
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with the DML model. Although we note that the DML model
exhibited the largest percentage of MCMC iterations indicat-
ing non-randomness in residuals for fits to the index, poten-
tially indicating misspecification in the observation or system
process (Carvalho et al. 2017). It may be that the sample size
for the fishery composition data was simply not large enough
for the LN to outperform the DML (as was found in Fisch et al.
2021), or through its parameterization of time-varying selec-
tivity, the Pacific hake assessment is effectively minimizing
process error. An alternative to choosing one optimal assess-
ment would be an ensemble approach where the final output
used to make management decisions is made up of estimates
from each assessment likelihood configuration, potentially
weighted by some of the model diagnostic/comparison crite-
ria (Maunder et al. 2020).

An important condition to note is that, although most
of the priors implemented for each composition likelihood
were intended to be diffuse and uninformative, when con-
verted to the positive scale (some were estimated on the
log scale) and used in the different likelihoods, they actu-
ally provided different amounts of information. This is ev-
idenced by our prior predictive distributions and the num-
ber of data points that were outside of the 95% HPD inter-
vals for each composition likelihood. These suggested that
for Pacific hake, the priors on the DML were the most in-
formative, followed by the LN and the DMA, although the
latter two were very similar. The justification for the priors
placed on the Dirichlet-multinomial overdispersion parame-
ters for the Pacific hake assessment was to avoid many MCMC
samples for the survey overdispersion parameter occurring
in the parameter space where θ /(1 + θ ) ≈ 1, and the ESS con-
verges on the true sample size (Grandin et al. 2020). The ra-
tionale for the prior on log(θ ), N(0, 1.8132), is that it provides
an approximately uniform interval 0–1 for θ /(1 + θ ) (the ESS
scalar; Grandin et al. 2020). In reality, this prior is somewhat
concave with a trough at θ /(1 + θ ) = 0.5 and the greatest
densities at 0.05 and 0.95 (Fig. S16). When this prior [N(0,
1.8132)] was removed and uniform priors [U(−10, 10)] placed
on the DML overdispersion parameters, the model suffered
from convergence issues according to Geweke’s diagnostic
with ∼20% of the parameters identified as not converged. Al-
though the uniform prior is not necessarily wholly uninfor-
mative, given it is exponentiated and then utilized to deter-
mine ESS, it renders different amounts of prior information
content for each formulation of the Dirichlet-multinomial.
When the prior N(0, 1.8132) was removed solely for the fish-
ery composition (replaced by the uniform prior, U(−10, 10)),
the assessment model converged, and the results were nearly
identical to those described in this study. This suggests that
the ESS for the survey composition tends toward the input
sample size in the absence of the informative prior and may
simply indicate a well-designed survey (as the overdispersion
parameter regarding the survey composition necessitates a
prior to converge). An alternative in this case might be to
use the actual number of fish aged as the survey input sam-
ple size. This presents a small computational concern with
the Dirichlet-multinomial——if the composition data are effec-
tively randomly sampled with replacement, the overdisper-
sion parameter will tend to the upper bound (the Dirichlet-

multinomial will effectively be collapsing to the multino-
mial), potentially causing convergence issues in the model.
This was found to occur in Fisch et al. (2021) for the DML when
there was little process error and at least close to random
sampling, and in Cronin-Fine and Punt (2021) when compo-
sition data were generated using a multinomial distribution.
Although this may simply represent a computational concern
(and implies a good survey or close to random composition
sampling), importantly the logistic-normal does not exhibit
the same bound issues or require the specification of such an
informative prior on its weighting parameters.

Comparisons between the DML and the DMA likelihoods in
each assessment seem to suggest more optimal performance
for the DML. This is in contrast to results from Fisch et al.
(2021) who found marginally better performance for the DMA
compared with the DML, in part, because of convergence is-
sues similar to those discussed in the previous paragraph. In
addition, it follows that there should be diminishing returns
in decreased variance as the sample size approaches a census;
thus, Fisch et al. (2021) recommended using the DMA. In this
study, each assessment fit with the DMA seemed to estimate
a steep saturating function with respect to ESS, causing the
ESS to be relatively insensitive to large increases in the ac-
tual sample size. This affected both assessments as each time
series of age-composition sample size had the characteristic
of starting at small sample sizes for the first half of the time
series and increasing linearly or even exponentially to con-
clude the time series (Fig. 2). Thus, the steep saturating func-
tions estimated for each assessment under the DMA caused
the ESS to increase little as the actual sample size doubled,
tripled, even quintupled toward the end of each time series.
This likely caused increased uncertainty in estimated quanti-
ties and larger degrees of variability and patterns in the ret-
rospective analyses for the DMA assessments. Conversely, the
DML parameterization, given its linear scaling of ESS with ac-
tual sample size, estimated an increase in the ESS at the end
of the time series consistent with the actual sample size. This
is likely an effect of the temporal pattern of sample size and
not simply the scale of the overall sample size, as when we
ran the Pacific hake assessment with the input fishery sample
size multiplied by 5, the results were largely unchanged. We
caution that the DML outperforming the DMA could be case
specific, potentially a function of time series length, species
life history, availability of auxiliary data, etc., although it may
be prudent to proceed in operational assessments with the
linear formulation of the Dirichlet-multinomial until these
potential confounding factors are further elucidated. It seems
the DMA parameterization under some circumstances (i.e.,
this study) causes ESS to saturate, or asymptote, at low val-
ues for the actual sample size early in the time series, result-
ing in a greater degree of estimated uncertainty and a poorer
performing model.

There were some structural differences between the two
stock assessment models that could have influenced our re-
sults, outside of simply the sample size for composition data.
The Pacific hake assessment, in addition to having a larger
sample size for fishery compositions, was privy to both more
years of data and to fishery-independent data, given that it
included a scientifically designed acoustic survey, where the
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cobia assessment only contained fishery-dependent informa-
tion. The Pacific hake assessment also included both time-
varying fishery selectivity and ageing error. Each of these fac-
tors likely decreased the probability of model misspecifica-
tion and (or) the degree of process error in the Pacific hake
assessment. Although neither likelihood replicated the cor-
relations in composition residuals well (Figs. S12–S15), im-
portantly, no structural pattern seemed evident in the resid-
ual correlations. In such instances, the Dirichlet-multinomial
may be a more appropriate choice, as much of the rationale
for using the logistic-normal arises from observing structural
patterns in the composition residuals (Francis 2014, 2017),
resulting from either process or sampling error and attempt-
ing to account for that error with a more flexible likelihood.
Given what we might expect with composition likelihoods——
that increased process error might favor the logistic-normal
(Fisch et al. 2021)——the Pacific hake model, by minimizing
process error, may have led to no obvious or characteristic
structural patterns in residual correlations (often described
in fisheries assessments as positive correlations between bins
that are close together and negative between bins that are
far apart; Francis 2011, 2014, 2017). The result was better
performance of the less flexible model (being the DML in
this case). In addition, the fact that the Dirichlet-multinomial
greatly outperformed the logistic-normal in the cobia assess-
ment (where the probability of misspecification or process
error was increased) suggests that the sample size of the com-
position data may trump these other factors.

There also exists a major difference in the formulation of
the two composition likelihoods, outside of their flexibility
in residual correlation structure. The Dirichlet-multinomial
is formulated to approximate the sampling error of discrete
data, whereas the logistic-normal approximates that of con-
tinuous data. Each assessment did in fact utilize expanded
compositions, meaning they were not measured in integers
but some preprocessing was done prior to incorporation into
each assessment, rendering them continuous data. In addi-
tion, each assessment model treated the composition data
as though they were continuous, predicting proportions as a
function of the total predicted catch, itself a continuous vari-
able. The reality is that most fisheries assessments treat and
model expected compositions as continuous, being a func-
tion of a variety of continuous variables/parameters (mortal-
ity, abundance, etc.). The process and observation models of
fisheries assessments are simply approximations of reality,
and the data-generating process is not captured fully by the
Dirichlet-multinomial or the logistic-normal, and neither is
it fully captured by the multinomial (or any other distribu-
tion). The DML outperforming the continuous LN despite the
continuous composition data and model expectations sug-
gests that the consideration of which likelihood to use based
on whether the composition data are discrete or continuous
is less important than other factors examined in this study,
such as the sample size of the data or the amount of process
error.

The sampling strategy used to collect composition data
(Ono et al. 2015; Fisch and Bence 2020), sample size (He et
al. 2016; Hulson et al. 2017), correlations and overdispersion
(Pennington and Volstad 1994; McAlister and Ianelli 1997),

and likelihood structure (Maunder 2011; Francis 2011, 2014;
Thorson et al. 2017; Fisch et al. 2021) have long been rele-
vant subjects in fisheries assessment literature. Recognizing
that composition data do not comprise iid samples and that
process error need be included in the residuals, stock assess-
ment analysts have largely moved away from the multino-
mial likelihood for composition data weighted with the num-
ber of fish or trips sampled and are now starting to avoid it-
erative reweighting of composition data in favor of the self-
weighting Dirichlet-multinomial likelihood, especially since
its incorporation into software packages such as Stock Syn-
thesis (Thorson et al. 2017) and the Beaufort Assessment
model (BAM; Williams and Shertzer 2015). To our knowl-
edge, few studies have compared the Dirichlet-multinomial
to other likelihoods with estimable variances or compared
different formulations of the Dirichlet-multinomial to one
another (but see Fisch et al. 2021) as we have in this study.
Although we note that in this study, we examined differ-
ent assessment models fitted to real data and thus cannot
claim to know that the estimated values for one model are
more or less biased than another. Nonetheless, given what
is known about model evaluation/diagnostic/comparison cri-
teria (e.g., that retrospective patterns will tend to be worse
for misspecified models, Hurtado-Ferro et al. 2014), we ex-
pect the more accurate model will tend to be one that per-
forms best in the metrics evaluated in this study. Simulation
studies within the field of stock assessment offer the distinct
advantage of being able to compare true values of a system
to those estimated; however, they are limited by the user-
defined bounds of the derived system and could lead to overly
optimistic results for simplistic simulators (Francis 2012).
Frankly, there is no fully adequate substitute for real data,
and fitting alternative models to empirical data can provide
valuable information for comparison in search of optimal
model formulations when information criterion measures
are unavailable (Akselrud et al. 2017; Fisch et al. 2019; Fisch
and Bence 2020). We find studies such as these offer an im-
portant analogue in fisheries assessment to explore replica-
tion of previous findings, particularly those from simulation
studies.

In summary, results for each assessment indicate the satu-
rating parameterization of the Dirichlet-multinomial is likely
inferior to the linear formulation in at least these cases, al-
though we encourage further simulation work on this topic
with specific emphasis on composition sample size and on
degree of model misspecification. Although all results were
not as explicit as we would like, it does seem evident that the
logistic-normal likelihood performs poorly compared with
the linear formulation of the Dirichlet-multinomial when
sample sizes are small for composition data from the fish-
ery. The comparison at larger sample sizes is more robust,
however, in the context of the Pacific hake assessment,
without significant evidence of survey process misspecifica-
tion or reason to disbelieve the last two data points of the
acoustic index, on balance the DML approach seems prefer-
able. It may be prudent to proceed in operational stock
assessments with the linear formulation of the Dirichlet-
multinomial; however, as our understanding of composition
formulations continues to evolve, we encourage analysts to
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incorporate different composition likelihoods in the model
fitting/development process in the interests of comparison.
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